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ABSTRACT

Automating Multiple Sclerosis (MS) lesion segmentation would be of great benet in initial diagnosis
as well as monitoring disease progression. Deep learning based segmentation models perform well in
many domains, but the state-of-the-art in MS lesion segmentation is still suboptimal. Complementary
to previous MS lesion segmentation challenges which focused on optimizing the performance on a
single evaluation dataset, this study aims to develop models that generalize across diverse evaluation
datasets, mirroring real-world clinical scenarios that involve varied scanners, settings, and patient
cohorts. To this end, we used all high-quality publicly-available MS lesion segmentation datasets
on which we systematically trained a state-of-the-art UNet++ architecture. The resulting models
demonstrate consistent performance across the remaining test datasets (are generalizable), with
larger and more heterogeneous datasets leading to better models. To the best of our knowledge, this
represents the most comprehensive cross-dataset evaluation of MS lesion segmentation models to
date using publicly available datasets. Additionally, explicitly enhancing dataset size by merging
datasets improved model performance. Specically, a model trained on the combined MSSEG2016-
train, ISBI2015, and 3D-MR-MS datasets surpasses the winner of the MICCAI-2016 competition.
Moreover, we demonstrate that the generalizability of our models also relies on our original use of
quantile normalization on MRI intensities.
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1 Introduction

The prevalence of brain disorders has surged in the past century, becoming increasingly widespread across all age
groups. Conditions such as stroke, epilepsy, Alzheimer’s and Parkinson’s disease, glioblastoma, and multiple sclerosis
have become notably common. Multiple Sclerosis (MS) is an autoimmune demyelinating disease impacting both the
brain and spinal cord, typically affecting young adults and more frequently females. According to the World Health
Organization (WHO), approximately 1.8 million individuals worldwide have been diagnosed with multiple sclerosis.2

This disorder affects various cognitive, emotional, motor, sensory and visual functions. Magnetic Resonance Imaging
(MRI) stands as the sole objective screening method capable of detecting MS. Regular followups must be conducted to

1This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

2www.who.int/news-room/fact-sheets/detail/multiple-sclerosis
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monitor the progression of the disease and to determine a treatment plan aimed at slowing its advancement. Medical
professionals are required for identifying demyelinating lesions, quantifying them, and tracking disease progression
through longitudinal screenings. Due to the laborious nature of the task of quantitatively tracking the lesions by expert
diagnosticians, there is an obvious necessity for a computer-assisted system to streamline the workload of medical staff,
by devising an accurate lesion segmentation method.

Traditional image analysis and computer vision methods, such as histogram-based, graph-based, and thresholding
methods, are prone to failure in multiple sclerosis segmentation tasks. This is due to the fact that demyelinating lesions
are not solely characterized by hyper-intensity, but also by the surrounding image context, which is challenging to
dene a priori using specic predened features.

The emergence of deep learning methods [1] has transformed the realm of computer vision by their ability to auto-
matically infer appropriate features and representations that can directly aid in solving the problem. However, this
requires vast quantities of data, which unfortunately existing MS datasets do not provide. For instance, while datasets
like ImageNet 3 boast millions of images featuring diverse object classes, available MS data consist of only thousands
of brain slices, with substructures that are much harder to differentiate than those from real life images.

The MS lesion segmentation literature contains various deep learning approaches that operate on diverse datasets
[2, 3, 4, 5, 6, 7]. Despite several competitions, which encouraged model optimization on a xed test dataset, the problem
persists due to inadequate numbers of samples as well as the variations in MRI hardware and parameters. Notably,
several such competitions were organised by MICCAI in 2008 and 2016 [8, 7], and by the International Symposium on
Biomedical Imaging (ISBI) in 2015 [9]. In 2021, MICCAI once again spearheaded a multiple sclerosis challenge, with
a particular emphasis on longitudinal screenings [10]. The rather suboptimal results of these competitions suggest there
is a noticeable dearth of training data that cannot be properly compensated by even the most sophisticated algorithms
(the latter become effective only when sufcient data becomes available). Various approaches were tested, resulting in
approximately similar outcomes. Other approaches trained diverse architectures on in-house data and subsequently
ne-tuned the models to t the dataset utilized in the competition, but the results are not nearly good enough to be of
clinical use (see the leaderboard for the MICCAI 2016 competition [7]).

As previously noted, there are few publicly available datasets for MS lesion segmentation and most are obtained in
uniform setups. MSSEG2016 is the only heterogeneous dataset, comprising data from multiple centers and MRI
machines, albeit with a limited number of samples.

To our knowledge, only a few studies have trained and tested models on more than one or two datasets. Their primary
objective has been to optimize results on a single test dataset, which is a valid approach given that competitions typically
emphasize model performance. However, optimizing on a single dataset may impact the model’s generalizability across
multiple datasets obtained in heterogeneous setups. Moreover, they have not employed a cross-dataset approach for
training and testing, which would involve training on one dataset (e.g., A) and testing on the remaining datasets (e.g., B,
C, D, ...), and repeating this process for all permutations. Without a comprehensive analysis of how the models perform
across multiple datasets, the direct clinical applicability remains uncertain. This is because there is no guarantee that
these models can be effectively utilized in clinical settings, that may be distinct from the settings used to obtain the
training data.

This paper focuses on investigating the generalizability of models through systematic training and testing on multiple
datasets. Note that generalizability is not a straightforward consequence of a highly performing model optimized
on some training dataset, as can be seen for example in [11] (see also Section 5.1). To address this, we gathered as
many MS datasets as possible, studying the abilities of models to generalize across various datasets rather than their
performance on a single test dataset. This approach provides more condence in the robustness of such models in
distinct clinical settings.

We show that the learned models behave well broadly across a larger number of datasets. We also show that by
combining multiple datasets we obtain models that match and even surpass the winner of the MICCAI 2016 competition
without any hyperparameter optimizations. Moreover, we demonstrate that the generalizability of our models is
inuenced by the normalization of MRI intensities. We employ quantile normalization, a method initially designed for
normalizing genomic data, which, to the best of our knowledge, is being applied to MRI data for the rst time. We also
investigate the inuence of expert annotation quality on model performance, given that the agreement between expert
annotations is far from perfect (around 60-70%).

The key contributions of the paper are as follows:

• We present a comprehensive analysis of MS lesion segmentation using all high-quality publicly available
datasets with the focus on building generalizable models. Compared to previous work, we push the study

3ImageNet: www.image-net.org
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of generalizability one step further, by showing that models trained on any of the existing public datasets
generalize well to the others.

• We show that quantile normalization of heterogeneous intensity distributions (of scans obtained with different
scanners and setups) improves model generalizability.

• We show that a simple architecture trained on limited data of a single MRI modality can surpass the ofcial
winner of the MICCAI 2016 competition, while generalizing well to other datasets. Whereas previous
lesion detection algorithms have demonstrated strong performance using internal datasets that are an order
of magnitude larger and incorporating several MRI modalities (e.g., FLAIR and T1w), we demonstrate that
similarly robust results can be achieved with a simpler method and just a single MRI modality (FLAIR) even
with an order of magnitude less training data.

The rest of the paper is structured as follows: Section 2 discusses the related work, Section 3 provides an overview of
the publicly available datasets, Section 4 introduces the methodology, while Section 5 presents the ndings, followed
by concluding remarks and future directions.

2 Related work

MS lesion segmentation research goes back more than a decade, with a major MICCAI challenge organised already in
2008 4. For brevity, we concentrate in the following on the recent state-of-the-art.

The study by Rondinella [3] introduced a fully convolutional DenseNet with attention, which was trained on the
ISBI2015 challenge dataset [9]. A single scan of a patient (out of several scans acquired for this patient at different
timepoints) was left out for testing purposes. Since the test data is not completely independent from the training data
(scans from the same patient, albeit at different timepoints, occur both in the training and the test data), signicant data
leakage is possible due to the potentially signicant overlaps of the lesions at different timepoints. In a similar vein, [2]
uses a modied UNet architecture and an essentially identical testing method as [3]. Both approaches reported Dice
scores exceeding 0.8 on the test patient (0.89 [3] and respectively 0.82 [2]).

Sadeghibakhi et al. [5] applied the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm to process
the MRI images, followed by the utilization of a Laplacian detector to extract edges. The original image and the one
obtained from the edge detector were concatenated into a 4D structure, whose patches with dimensions 80x80x80x2
were then employed for training a modied attention UNet architecture. Similarly to [3] and [2], the ISBI2015 dataset
was utilized for training. However, for testing, a set of unseen data proposed by the competition was employed. Using
independent test data yielded a Dice score of 0.64, which is likely a better estimation of the true performance of the
model.

The report on the MICCAI 2016 multiple sclerosis challenge [7] details the participation of 13 teams. Each team
pursued a distinct approach, employing methods such as graph cuts, neural networks, ensemble techniques and random
forests. Some teams used models pretrained on in-house datasets. However, while the methods demonstrated promising
results on the designated test dataset, there remains a gap in evaluating the robustness of these methods on other
independent datasets. The top four teams obtained Dice scores ranging from 0.52 to 0.59.

In a recent study, Sarica et al. [6] introduced a dense residual UNet for multiple sclerosis lesion segmentation. Unlike
previous literature, this study conducted more comprehensive training and testing scenarios involving two datasets,
ISBI2015 and MSSEG2016. Initially, a model was trained on the ISBI2015 dataset and tested on its corresponding
test data, resulting in a Dice score of 0.6688. Subsequently, a model underwent training on the MSSEG2016 dataset
and was tested on the MSSEG2016-test dataset achieving a Dice score of 0.6727. Furthermore, the study also presents
a cross-dataset validation scenario where the method was trained on ISBI2015 and tested on MSSEG2016, and vice
versa, yielding lower Dice scores, of 0.6031 and 0.4819, respectively.

Another notable work [11] introduced DeepLesionBrain (DLB), a novel method for multiple sclerosis lesion segmenta-
tion that is robust to domain shifts, as demonstrated through cross-dataset testing. DLB employs a set of compact 3D
convolutional neural networks distributed across the brain, each focusing on specic regions with overlapping receptive
elds to simplify the complex task of whole-brain segmentation into manageable subtasks, ensuring consistent results.
The method incorporates Hierarchical Specialization Learning (HSL) to extract both global and local features by rst
training a generic network and then rening it for specic brain regions. Additionally, DLB utilizes Image Quality Data
Augmentation (IQDA) to introduce realistic variations in training data, enhancing the model’s robustness to different
data sources and quality levels, thus improving generalization across unseen domains. DLB has achieved robust results
across a high quality internal and 2 public datasets (ISBI2015, MSSEG2016) using two MRI modalities (T1w and

4www.nitrc.org/projects/msseg
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FLAIR). Our work shows that similarly robust results can be obtained using a single MRI modality (FLAIR) using a
much simpler method.

Recently, [12] released a model, LST-AI, trained on an internal dataset of 491 pairs 5 of FLAIR and T1w scans. LST-AI
obtained Dice scores ranging between 0.61 and 0.74 on the publicly available datasets (with an average of 0.67),
outperforming all previous methods. On the other hand, we are trying to obtain generalizable models using a single
imaging modality (FLAIR)6 and using publicly available datasets, which are much smaller. Moreover, while LST-AI is
a single model (actually an ensemble of three models) that generalizes well on the few existing public datasets, we
push the study of generalizability one step further, by showing that training a model on any of the existing public
datasets generalizes well to the others, even though the training datasets are an order of magnitude smaller. In general,
generalizability of a model cannot be proved on a limited number n of test datasets, as the model can always fail
on another, (n+1)-th dataset. By training models on multiple datasets and demonstrating their robust performance
across all test datasets, we increase the condence in the generalizability of the models and the corresponding training
method. For example, [11] showed that training the nicMSlesion algorithm on their largest, in-house dataset obtains a
catastrophic Dice score of 0.13 on ISBI2015, despite the high Dice score of 0.65 on MSSEG2016, showing that this
particular model is not generalizable (Table 6 of [11]).

In conclusion, the state-of-the-art in MS lesion segmentation is around 0.67 in terms of Dice score for public datasets,
with signicantly higher scores obtained only in studies where the test data was not independent of the training data or
used larger or higher quality internal datasets.

3 Datasets

To assess the effectiveness and robustness of the proposed method, the following publicly available datasets were used
(see Table 1).

Table 1: Datasets

Dataset Scanner Manufacturer Subjects Scans Slices

ISBI2015 3T Philips Medical Systems 5 train 21 2843

MSSEG2016-train 1.5T & 3T Center

• 01: Siemens Verio 3T
• 07: Siemens Aera 1.5T
• 08: Philips Ingenia 3T

15 15 3021

MSSEG2016-test 1.5T & 3T Center

• 01: Siemens Verio 3T
• 03: General Electrics
Discovery 3T

• 07: Siemens Aera 1.5T
• 08: Philips Ingenia 3T

38 38 8289

3D-MR-MS 3T Siemens Magnetom Trio 30 30 10517

3.1 ISBI2015

The training dataset [9] for the ISBI Longitudinal Multiple Sclerosis challenge was made publicly accessible in 2015.7. It
includes T1w, T2w, PDw and T2-weighted FLAIR images acquired using a 3T MRI scanner. The dataset is longitudinal,
featuring 4 to 6 follow-up scans for each patient, spanning an acquisition period of one year. It is divided into training
and testing data segments. The training dataset comprises 5 patients with 4 to 5 follow-up MRI scans per patient,
totaling 21 MRI scans. Conversely, the testing segment includes 14 patients with 4 to 6 follow-up scans per patient,

5At least an order of magnitude larger than all the publicly available datasets.
6Paired T1w and FLAIR images may not be available in all clinical settings.
7ISBI Challenge website: https://smart-stats-tools.org/lesion-challenge-2015
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resulting in a total of 61 scans. Each MRI scan was segmented by two raters, with segmentation masks disclosed only
for the training set. Therefore, in this paper only the ISBI2015 training dataset was used (referred to as ISBI2015).

3.2 MSSEG2016

The MICCAI 2016 Multiple Sclerosis lesion segmentation challenge [8] introduced a dataset comprising lesions
manually segmented by 7 experts, referred to as MSSEG2016 in the rest of this study. This dataset includes MRIs
from 53 patients, 15 of each used for training and the remaining 38 for testing. The data was acquired in 4 centers,
each utilizing a distinct scanner. The training set comprises patients from 3 out of 4 centers, while the test set includes
patients from all 4 centers, ensuring that one center (center03) remains unseen during training. Both training and test
data include lesion segmentation masks from the 7 experts and a consensus mask used as ground truth. Each patient’s
imaging modalities encompassed a 3D FLAIR image, a 3D T1-weighted image before and after contrast substance
(Gadolinium) injection, and an axial dual PD-T2 weighted image, all featuring similar image resolutions. The dataset is
accessible upon request on the Shanoir website 8. As discussed in the ofcial competition report [7], one specic case
from the test dataset (patient 8 from center 7) had an empty consensus segmentation, meaning that the 7 experts did not
agree on the position and extent of any lesion in that case. Therefore, this case needed to be excluded since no ground
truth was available for it.

3.3 3D-MR-MS

In [13], a multiple sclerosis database comprising data from 30 patients was released. These data were obtained using a
3T MR scanner with conventional sequences at the University Medical Center Ljubljana (UMCL). For each scan, three
expert raters conducted segmentations of white matter lesions, which were subsequently rened through collaborative
sessions to establish a consensus segmentation. The scans of each patient include a T1w, a T2w and a FLAIR image.
Notably, there is no division between training and testing data. The data can be accessed on the laboratory website 9.

4 Methodology

To test the generalizability of lesion segmentation models, we comprehensively trained a model on each of the 4
datasets and tested it on the remaining ones, checking if model performance is similar across all training-test dataset
combinations (Figure 1).

Since the existing datasets are rather small, we also tested whether explicitly increasing the dataset size by combining
datasets improves model performance .

The state-of-the-art model performances are around 0.67. This could be due to the shortage of MS data, but also to the
reduced quality of the annotations. Surprisingly, we observed that expert annotators show less-than-perfect agreement
in their lesion annotations, prompting us to investigate the extent to which this impacts model performance.

4.1 Preprocessing

We used the original preprocessed versions of the datasets, as all underwent similar preprocessing steps, namely skull
stripping and N4 bias eld correction.

In addition to the standard preprocessing steps, we applied quantile normalization to reduce the rather large intensity
distribution differences between images acquired with different scanners. Quantile normalization, a method initially
designed for genomic data [14, 15], adjusts the distribution of the intensities in an image to the standard distribution of
a given template.

Finally, 2D slices (of constant z) in the standard axial orientation were extracted from the 3D images and resized to
224x224. Only slices containing brain tissue were included in the dataset (see Table 1 for the corresponding numbers of
slices). Both quantile normalization and the use of standard axial slices aim to mitigate dataset variability and enhance
model robustness. For simplicity, we only use the FLAIR images from the datasets, thereby broadening the applicability
of our approach. This choice was also motivated by previous studies which have not observed major benets of using
additional MRI modalities [5].

8MSSEG2016: https://shanoir.irisa.fr/shanoir-ng/challenge-request
93D-MR-MS: https://lit.fe.uni-lj.si/en/research/resources/3D-MR-MS/
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Figure 1: Our approach: (A) MS lesion segmentation architecture. (B) Full cross-dataset testing of generalizability.

6
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4.2 Model architecture and training

The state-of-the-art deep learning architectures used in medical image segmentation are UNets [16]. These network
architectures employ an encoder-decoder structure, comprising contracting paths for feature extraction and expansive
paths for precise localization.

In the UNet++ architecture [17] the encoder and decoder are connected through a series of nested, dense skip pathways
instead of the standard UNet skip connections. These skip pathways use dense convolution blocks with the aim of
reducing the semantic gap between the feature maps of the encoder and those of the decoder prior to fusion. We chose
the UNet++ architecture for its slightly better performance compared to the standard UNet across the chosen datasets.
We used the UNet++ implementation from the Segmentation Models PyTorch library [18] and tested several Timm
encoders [19], including resnet18, timm-efficientnet-b0, eca_nfnet_l0, and timm-mobilenetv3_small
_minimal_100. Since resnet18 yielded slightly better results, it was used in all subsequent runs. 80% of the patient-
data was used for training and 20% for model selection (validation). To avoid data leakage, the split was performed
such that all slices of a scan are either in the training set or in the validation set.

The chosen model was trained to minimize a weighted BCE Loss, with the Adam optimizer and the following
hyperparameters: initial learning rate 1e-3, weight decay 1e-6, betas (0.9, 0.999) and BCE Loss weight 0.8 (to deal with
class imbalance). Given the large numbers of parameters of such models and the small dataset sizes, regularization
methods (such as weight decay) are essential to avoid model over-tting. All models were trained for 50 epochs and
the best model with the highest Dice score over the validation set was selected. Testing was always performed on a
completely independent dataset.

4.3 Evaluation metrics

For evaluation purposes, both the Dice coefcient (DSC) and the Jaccard index (IoU) were computed. These metrics
quantify the relative overlap between the predicted and the ground truth lesion segmentations of the MRI image:

DSC =
2TP

2TP + FP + FN
IoU =

TP

TP + FP + FN

where

• TP represents the True Positives (the pixels accurately identied as multiple sclerosis lesions)

• TN - True Negatives (the pixels accurately identied as non-lesions)

• FP - False Positives (the pixels erroneously predicted as MS lesions)

• FN - False Negatives (the pixels inaccurately predicted as non-lesions).

Since the DSC is the primary metric reported in the MS lesion segmentation literature and competitions, we mainly
compare our models in terms of DSC.

5 Results

To assess the generalizability of the selected model across the available datasets, extensive training and testing were
conducted.

5.1 Lesion segmentation models are generalizable to multiple datasets

First, a model was independently trained on each dataset and subsequently tested on all the others, with the results
presented in Table 2. It can be seen that the models yield similar outcomes across all dataset combinations, thereby
demonstrating generalizability. To the best of our knowledge this is the most extensive cross dataset evaluation of MS
lesion segmentation models using publicly available datasets. Figure 2 shows the lesion segmentations produced by all
our models on a given 2D slice of a certain patient scan.

Although extensively studied on single datasets, cross-dataset validation of MS lesion segmentation has been addressed
in far fewer publications [6, 11]. While [6] reports the cross-dataset validation of only a single algorithm, [11] performs
a more extensive cross-validation of 4 different algorithms (nicMSlesion, DeepMedic, 2.5D Tiramisu and DLB), but
only 2 public datasets (MSSEG2016, ISBI2015) and one in-house dataset are considered. The results reported in

7
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Figure 2: Lesion segmentations produced by our models (trained on different datasets) on slice 148 of the scan of
patient 1 from center 3 from the MSSEG2016 test dataset. Orange: True Positives, Red: False Positives, Blue: False
Negatives (Ground Truth: Orange+Blue, Predicted: Orange+Red).
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Table 2: Performance of models trained on individual datasets and tested on the rest.

Trained on Tested on Dice score IoU score

MSSEG-2016 train MSSEG-2016 test 0.602 0.456
MSSEG-2016 train 3D-MR-MS 0.523 0.379
MSSEG-2016 train ISBI-2015 0.569 0.407
3D-MR-MS MSSEG-2016 test 0.544 0.406
3D-MR-MS MSSEG-2016 train 0.606 0.456
3D-MR-MS ISBI-2015 0.603 0.444
MSSEG-2016 test MSSEG-2016 train 0.698 0.542
MSSEG-2016 test 3D-MR-MS 0.569 0.423
MSSEG-2016 test ISBI-2015 0.623 0.462
ISBI-2015 MSSEG-2016 train 0.515 0.352
ISBI-2015 MSSEG-2016 test 0.516 0.362
ISBI-2015 3D-MR-MS 0.460 0.273

[11] show that generalizability is not a trivial consequence of a highly performing model optimized on some training
dataset. For example, training the nicMSlesion algorithm on the largest (in-house) dataset obtains a catastrophic Dice
score of 0.13 on ISBI2015, despite the high Dice score of 0.65 on MSSEG2016, showing that this particular model
is not generalizable (Table 6 of [11]). Similar non-generalizable models were obtained by 2.5D Tiramisu trained on
MSSEG2016 (with a lower Dice Score of 0.165 on ISBI2015, compared to 0.706 on the in-house dataset) and by
nicMSlesion trained on ISBI2015 (with a 0.204 Dice score on the in-house dataset contrasting a 0.442 Dice score on
MSSEG2016). Therefore our generalizability results are non-trivial, as a highly performing model on a limited dataset
is not guaranteed to perform well on other independent datasets.

5.2 Larger and more heterogeneous datasets produce better models

The highest cross dataset Dice score of 0.698 is achieved by our model trained on the ‘MSSEG2016 test’ dataset and
tested on the ‘MSSEG2016 train’ dataset. This is likely due to the ‘MSSEG2016 test’ dataset having more samples
than ‘MSSEG2016 train’. Moreover, although both datasets are heterogeneous (contain scans acquired with different
scanners in different centers), the scanner setups from ‘MSSEG2016 train’ are among those used in ‘MSSEG2016 test’
(unlike other test datasets considered in Table 2, which are completely independent). The converse is not true, since
MSSEG2016-test includes a center (center03) that does not occur in MSSEG2016.

Next, we compared the models trained on different datasets to determine if any characteristics of the training dataset
inuence their (average) performance on other datasets. To this end, we performed a one-way ANOVA test on the
means of the Dice scores of the models from Table 2 (see Table 3 for the corresponding means). The null hypothesis of
no difference between means was rejected at p=0.038.10

Table 3: Mean Dice scores for models trained on individual datasets and tested on the remaining ones.

Trained on Slices Heterogeneous? Mean Dice score

MSSEG-2016 train 3021 heterogeneous 0.564
3D-MR-MS 10517 homegeneous 0.584
MSSEG-2016 test 8289 heterogeneous 0.630
ISBI-2015 2843 homegeneous 0.497

Indeed, heterogeneous datasets tend to perform better than homogeneous ones for approximately equal numbers of
samples. For example, the heterogeneous ‘MSSEG2016 train’ dataset (with 3021 slices) performs better (0.564 >
0.497 Dice score) than the homogeneous ISBI2015 dataset (with a comparable number of 2843 slices). Likewise, the
heterogeneous ‘MSSEG2016 test’ dataset (8289 slices) marginally outperforms the homogeneous 3D-MR-MS dataset
(10517 slices): 0.630 > 0.584 average Dice score.

10The post-hoc Tukey HSD analysis revealed a statistically signicant difference between the large heterogeneous dataset
MSSEG-2016 test and the small homogeneous dataset ISBI-2015, as expected (p=0.02714).

9
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On the other hand, the models trained on larger datasets tend to outperform those trained on smaller datasets, as long
as both are either homogeneous or heterogeneous. In the case of heterogeneous datasets, ‘MSSEG2016 test’ (8289
slices) marginally outperforms ‘MSSEG2016 train’ (3021 slices): 0.630 > 0.564 average Dice score. Alternatively, for
homogeneous datasets, 3D-MR-MS (10517 slices) outranks ISBI2015 (2843 slices): 0.584 > 0.497 average Dice score.

Finally, note that while the model trained on the large ‘MSSEG2016 test’ dataset is the top performer with an average
Dice score of 0.630, the model trained on ISBI2015 displays the lowest performance (0.497 average Dice score) likely
because it is both small and homogeneous (the difference is statistically signicant at p=0.02714).

5.3 Increasing dataset size improves model performance

Next, we tested whether explicitly increasing the dataset size inuences model performance. To achieve this, we
considered combinations of datasets and compared the performance of the combined dataset with the performance of
the individual datasets. For example, we compared the performance of a model trained on the datasets A+B +C with
the performances of models trained individually on A, B and C respectively (all of these models being tested on the
same dataset D - compare column ‘Dice score’ with column ‘Individual Dice scores’ in Table 4).

Table 4 shows that increasing dataset size by combining datasets produces slightly higher Dice scores in all cases. For
example:

Dice(MSSEG2016-train+3D-MR-MS+ISBI2015, MSSEG2016-test) = 0.631
> Dice(MSSEG2016-train, MSSEG2016-test) = 0.602

Dice(3D-MR-MS, MSSEG2016-test) = 0.544

Dice(ISBI2015, MSSEG2016-test) = 0.516

where Dice(train,test) is the Dice score obtained by a model trained on ‘train’ and tested on ‘test’.

As score improvements are expected to be only sublinear with dataset size increase, achieving signicantly higher
scores would probably require signicantly larger datasets than the ones already available. Indeed, the gap between
other vision datasets such as ImageNet with millions of examples and the MS datasets with only tens of thousands of
slices is still too large and needs to be addressed somehow by more MS data, which can only be collected with a similar
community effort in the future.

Also note that our model trained on ‘MSSEG2016 train’ combined with 3D-MR-MS and ISBI2015 surpasses the winner
of the MICCAI 2016 competition (with a Dice score of 0.631, versus 0.5914 obtained by the winner) [7].

Given that the ‘MSSEG2016 test’ dataset is comprised of scans obtained in 4 distinct centers with 4 different scanners
(one of which, namely center03, is completely distinct from the scanners used in the training dataset, even made by a
different company, General Electric), we checked the Dice scores obtained by the above combined model averaged on
the individual centers. We noticed that the performance of the model is largely consistent across the all different centers
(0.664 for center01, 0.624 for center03, 0.627 for center07 and 0.608 for center08) and that the performance on the
unseen center (center03) is close to the average performance of the model on the entire dataset, thereby conrming the
generalizability of the model.

Table 4: Performance of models trained on combinations of datasets.
Trained on Tested on Dice score Individual Dice scores IoU score

Trained on Test Dice score Individual Dice scores IoU score
MSSEG-2016 train + 3D-MR-MS MSSEG-2016 test 0.624 (0.602, 0.544) 0.478
MSSEG-2016 train + 3D-MR-MS ISBI-2015 0.611 (0.569, 0.603) 0.450
ISBI-2015 + MSSEG-2016 train MSSEG-2016 test 0.609 (0.516, 0.602) 0.463
ISBI-2015 + MSSEG-2016 train 3D-MR-MS 0.533 (0.46, 0.523) 0.390
ISBI-2015 + 3D-MR-MS MSSEG-2016 test 0.581 (0.516, 0.544) 0.438
ISBI-2015 + 3D-MR-MS MSSEG-2016 train 0.639 (0.515, 0.606) 0.484
MSSEG-2016 train + 3D-MR-MS + ISBI-2015 MSSEG-2016 test 0.631 (0.602, 0.544, 0.516) 0.487

10
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5.4 Quality of annotations

The highest Dice score obtained in this paper is 0.698. Even the best state-of-the-art MS lesion segmentation models
achieve average Dice scores around 0.67 [6, 12]. These still far from perfect scores could be due to the shortage of MS
data, but also to the reduced quality of the annotations.

Surprisingly, we observed that expert annotators display only far from perfect agreement. Both ISBI2015 and
MSSEG2016 datasets were annotated by multiple experts (2 in the case of ISBI2015 and 7 for MSSEG2016). While
the MSSEG2016 dataset contains a consensus annotation computed with the Logarithmic Opinion Pool Based Simul-
taneous Truth And Performance Level Estimation (LOP STAPLE) algorithm [20], ISBI2015 has no such consensus
annotation. In the case of MSSEG2016, the average Dice score between expert annotations and the consensus
meanscan meani Dice(Experti, Consensus) = 0.72 is signicantly larger than the average Dice score between
expert annotationsmeanscan meani<j Dice(Experti, Expertj) = 0.61, showing that the consensus annotation is of
higher quality than the individual annotations. On the other hand, the Dice score between the 2 raters from ISBI2015 is
meanscan Dice(Expert1, Expert2) = 0.73.

To investigate to what extent annotation quality affects model performance, we trained models on ISBI2015 with
annotations from expert 1, expert 2 and respectively the combined annotations of the two experts (their union). Table
5 shows that this simple consensus annotation leads to only marginally better results than the two individual expert
annotations.11 This rather small difference could be due to the very small sample size, but also to the difculty of
obtaining a signicantly better consensus annotation from just two lower quality annotations. This reinforces once again
the importance of obtaining high-quality annotations, which however may incur signicant costs related to employing
several independent annotators.

Therefore, besides dataset size, expert annotation quality also seems to be a major bottleneck towards signicantly
better MS lesion segmentation models. For example, it seems difcult to aim for Dice scores above 0.8, if annotation
quality is not improved beyond the current 0.73.

Table 5: Results of models trained on ISBI2015 with rst rater segmentation, second rater segmentation and their
consensus (union)

Trained on Tested on Dice score IoU score

ISBI-2015 expert 1 MSSEG-2016 train 0.481 0.327
ISBI-2015 expert 1 MSSEG-2016 test 0.511 0.359
ISBI-2015 expert 1 3D-MR-MS 0.394 0.257
ISBI-2015 expert 2 MSSEG-2016 train 0.498 0.339
ISBI-2015 expert 2 MSSEG-2016 test 0.506 0.354
ISBI-2015 expert 2 3D-MR-MS 0.423 0.279
ISBI-2015 consensus MSSEG-2016 train 0.515 0.352
ISBI-2015 consensus MSSEG-2016 test 0.516 0.362
ISBI-2015 consensus 3D-MR-MS 0.460 0.273

5.5 Ablation studies

To demonstrate the contributions of the key components of our approach, we performed two ablation studies.

The role of quantile normalization: Table 6 compares the results of the models from Tables 2 and 4, obtained on
quantile normalized datasets, with corresponding models trained and tested on the same datasets but which were linearly
normalized to the [0,1] range instead of quantile normalized. A Wilcoxon paired statistical test revealed that quantile
normalization signicantly outperforms linear normalization (p=0.00003624).

UNet++ versus UNet: Table 7 compares models trained using the UNet++ architecture with models trained employing
the UNet baseline. We observed that UNet++ performs better (statistically signicant by a Wilcoxon paired test with
p=0.00029).

11The Dice score average for the consensus model, 0.497, marginally exceeds the corresponding averages for the two raters
0.462, 0.476. However, a repeated measures ANOVA test on the Dice scores from Table 5 does not lead to the rejection of the null
hypothesis of no difference between training models, p=0.1137.
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Table 6: Ablation study for comparing quantile normalization with linear normalization (Dice scores)

Trained on Tested on Quantile normalization Linear normalization

MSSEG-2016 train MSSEG-2016 test 0.602 0.574
MSSEG-2016 train 3D-MR-MS 0.523 0.510
MSSEG-2016 train ISBI-2015 0.569 0.535
3D-MR-MS MSSEG-2016 test 0.544 0.495
3D-MR-MS MSSEG-2016 train 0.606 0.549
3D-MR-MS ISBI-2015 0.603 0.568
MSSEG-2016 test MSSEG-2016 train 0.698 0.662
MSSEG-2016 test 3D-MR-MS 0.569 0.502
MSSEG-2016 test ISBI-2015 0.623 0.553
ISBI-2015 MSSEG-2016 train 0.515 0.475
ISBI-2015 MSSEG-2016 test 0.516 0.460
ISBI-2015 3D-MR-MS 0.460 0.418
MSSEG-2016 train + 3D-MR-MS MSSEG-2016 test 0.624 0.650
MSSEG-2016 train + 3D-MR-MS ISBI-2015 0.611 0.603
ISBI-2015 + MSSEG-2016 train MSSEG-2016 test 0.609 0.607
ISBI-2015 + MSSEG-2016 train 3D-MR-MS 0.533 0.459
ISBI-2015 + 3D-MR-MS MSSEG-2016 test 0.581 0.558
ISBI-2015 + 3D-MR-MS MSSEG-2016 train 0.639 0.613
MSSEG-2016 train + 3D-MR-MS + ISBI-2015 MSSEG-2016 test 0.631 0.631

Table 7: Ablation study for comparing different model architectures, UNet++ vs. UNet (Dice scores)

Trained on Tested on UNet++ UNet

MSSEG-2016 train MSSEG-2016 test 0.602 0.596
MSSEG-2016 train 3D-MR-MS 0.523 0.518
MSSEG-2016 train ISBI-2015 0.569 0.541
3D-MR-MS MSSEG-2016 test 0.544 0.518
3D-MR-MS MSSEG-2016 train 0.606 0.576
3D-MR-MS ISBI-2015 0.603 0.569
MSSEG-2016 test MSSEG-2016 train 0.698 0.676
MSSEG-2016 test 3D-MR-MS 0.569 0.529
MSSEG-2016 test ISBI-2015 0.623 0.608
ISBI-2015 MSSEG-2016 train 0.515 0.492
ISBI-2015 MSSEG-2016 test 0.516 0.494
ISBI-2015 3D-MR-MS 0.460 0.390
MSSEG-2016 train + 3D-MR-MS MSSEG-2016 test 0.624 0.622
MSSEG-2016 train + 3D-MR-MS ISBI-2015 0.611 0.594
ISBI-2015 + MSSEG-2016 train MSSEG-2016 test 0.609 0.592
ISBI-2015 + MSSEG-2016 train 3D-MR-MS 0.533 0.540
ISBI-2015 + 3D-MR-MS MSSEG-2016 test 0.581 0.569
ISBI-2015 + 3D-MR-MS MSSEG-2016 train 0.639 0.626
MSSEG-2016 train + 3D-MR-MS + ISBI-2015 MSSEG-2016 test 0.631 0.624

6 Discussion and future work

Complementary to previous MS lesion segmentation challenges which focused on optimizing the performance on
a single evaluation dataset, this study concentrates on developing models that perform well across a wide range of
evaluation datasets (are ‘generalizable’), a scenario closer to real life clinical usage, where much wider ranges of
scanners, settings and patient cohorts are expected. We started by collecting all high-quality publicly available MS
lesion segmentation datasets and systematically trained a state-of-the-art UNet++ architecture on each of these datasets.
The resulting models showed similar performance across the remaining datasets, with larger and more heterogeneous
datasets leading to better models. Next, we showed that explicitly increasing the dataset size by combining datasets also
leads to improved performance. In particular, combining the ‘MSSEG2016 train’, ISBI2015 and 3D-MR-MS datasets
produced a model with a Dice score of 0.631, surpassing the winner of the MICCAI 2016 competition using a simple
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method on a single MRI modality (FLAIR). Besides dataset size, the quality of expert annotations is also essential for
model performance. Surprisingly, we observed that expert annotators display only far from perfect agreement in their
lesion annotations (under 0.73).

Developing models that generalize out-of-distribution (OOD) is a crucial aspect in numerous applications [21], not
just MS lesion segmentation. However, there seems to be no one-size-ts-all solution for OOD generalization that we
could directly apply in our setting. Different techniques might be necessary depending on the specic characteristics of
the OOD data and the task. In this work we discovered that a simple normalization method, quantile normalization,
originally introduced in the context of genomic data, is an effective method for mitigating the distribution shifts due to
different scanners and scanning protocols used in diverse MRI datasets. Simpler linear normalization methods do not
perform as well in the case of MS lesions which involve hyperintensities from the tails of the distributions. To reduce
dataset variability and enhance model robustness, we also standardize the scan orientations to work with axial slices.
Therefore, two simple techniques, quantile normalization and working with standardized axial slices seem sufcient for
ensuring robust OOD performance. However, other methods exist (e.g. [11, 12]) and could potentially be combined
with our methods in future work.

The performance of state-of-the-art MS lesion segmentation models is still suboptimal for clinical applications [22].
Moreover, besides high performance on a specic clinical setting, an essential requirement for the wide adoption of a
model is its robustness in widely different clinical settings (involving different scanners and scanner settings). Our work
represents an important step toward this essential desideratum. Moreover, while previous lesion detection algorithms
have demonstrated strong performance using internal datasets that are an order of magnitude larger and incorporating at
least two MRI modalities (e.g., FLAIR and T1w) [12], we demonstrate that model generalizability can be achieved with
a simpler method and just a single MRI modality (FLAIR) even with an order of magnitude less training data.

In conclusion, we expect deep learning based MS lesion segmentation models to become really useful in clinical settings
only with more data, as well as higher quality annotations, which can only be obtained by a concerted community effort.
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